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The syntheses of the sandwich complexes ferroceh&CsHs),- = -6 z , z
Fe, in 1951 and uranocene;f-CgHg),U, in 1968 ushered in 120 140 160 180 200 220 240
the modern eras of organotransition metal and organoactinide Bz-M-Bz Angle, 6 (°)

chemistry, respectively. Ferrocene and uranocene are examplegigure 1. Relative LDA energies fori-CeHg)2Ti and (75-CsHe)2Th as
of linear sandwich complexes, that is, those in which the (ring a function of the (centroid)M—(centroid) angle). For each complex,
centroid)-M—(ring centroid) angle (denotefl) is 18C. In the the energy fory = 180" is chosen to be zero.

case of §>-CsHs)2M chemistry, a number obent (6 < 180°) structure based on the experimental structures of (}88)and
complexes are known when M is a main-group or rare-earth yranocene. However, in view of the bent structures of several
elemeng The explanation for the bent structures of these com- CpLn complexes, it struck us that the linear structure of
plexes has been the subject of some debate concerning the relativergB),Gd may be largely due to steric interactions rather than
importance of covalent, electrostatic, and steric interactions. g intrinsic electronic preference and that the assumption of a
Arenes are generally poorer ligands than cyclopentadienyl and |inear structure for®-CeHs),An complexes might therefore be
substituted cyclopentadienyl ligands. Bis(benzene) chromiug, Bz jncorrect. In this contribution, we report optimized geometries
Cr (Bz=1°CqHe), characterized shortly after ferrocene, was the of Bz,An (An = Th—Am) and °-CsHsRs),An (An = Th, U,
first of a number of linear transition-metal bis(benzene) sandwich py: R= Me, 'Bu) obtained by using local density approximation
complexes that have been synthesized and investi§atddw- (LDA) 3 and Perdew-Wang (PW9t)gradient-corrected relativ-
ever, until recently bis(arene) complexes of the f-elements have jstic density functional theory (DFT) metho#sé These DFT
been unknown. Cloke et al. used metal-atom synthesis to make amethods are found to be able to reproduce the experimental
series of bis(arene) lanthanide complexes and obtained a crystayeometries and vibrational frequencies of organoactinide com-
structure for (TBB)Gd (TBB = 7°-1,3,5-GHsBus), whichhasa  plexes with satisfactory accura&yThe (TTBRAN calculations
linear geometry. With respect to actinide complexes, which is  that we report here are, to date, the largest full geometry
the focus of this contribution, Pires de Matos, Marshall, and co- gptimizations to be carried out on an actinide system.
workers recently used mass spectrometry to identifyAB" As a first step, we have calculated the LDA energy curves for
and [(TBBRAN]" (An = Th, U)® These discoveries suggest that Bz, Tj and BzTh to compare the structures of transition metal
it might be possible to synthesize and isolate neutral bis(arene)and actinide complexes that both have metal atoms with four
actinide complexes. ) ) valence electrons. As shown in Figure 1,Bizhas a minimum
Theoretical treatments of linear sandwich complexes have gnergy with a linear structuré (= 180°) and a steep potential
developed in parallel with their syntheses. We and others havefor pending, consistent with its experimentally determined linear
recently addressed the structure and bonding in linfe€Hn)2M  geometry:® In contrast, BzTh is predicted to have a significantly
(n=6, 7, 8) sandwich complexes by using advanced theoretical pent structure (LDA:6 = 135; PW91: 6 = 13%).1° Linear Bz-
electronic structure methoé®is(arene) sandwich complexes of  Th js a transition state, as confirmed by the imaginary frequency
the lanthanide (Ln) and actinide (An) elements have been studied(32g cm™?) for the bending of linear BT h at the optimized linear
recently by using molecular mechani€glensity functionat! and (Den) structure of the complex. These results confirm our suspicion

Ln and An sandwich complexes assumed a linear sandwich
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Table 1. DFT (PW91) Geometries and Relative Energies for
Linear and Bent BAn (An = Th—Am) Sandwich Complexes

linear bent

AEg—L
compd An-Bz (A2 6 (deg) An-Bz (A 6 (deg) (kcal/moly
Bz, Th 2.309 180 2.271 138.5 —-4.6
Bz,Pa 2.200 180 2.171 1419 -10.1
Bz,U 2.156 180 2.129 137.0 -10.2
Bz:Np 2.146 180 2.111 136.2 —10.2
Bz,Pu 2.156 180 2.117 135.3 —-6.5
Bz,Am 2.160 180 2.122 135.6 -0.3

a Actinide—(benzene centroid) distanceAEg-| = Epent — Eiinear
whereEpenrandEjinear are the total energies at the optimized geometries
in the bent and linear geometries, respectively.

We obtain a similar result for B&). Linear Dgn) BzoU is a
high-order saddle point with several imaginary frequencies. We
therefore examined several possible distortions ofBall of
which produce structures lower in energy than the linear one.
The lowest-energy structure for B2 is a bent C,,) sandwich
with planar rings and = 137°. This bent structure is 10.2 kcal/
mol lower than the linear structure.

Table 1 lists the optimized (PW91) geometries and relative
energies for the lineaD,) and bent C,,) forms of the early
actinide BzAn (An = Th—Am) complexes. For each of these
complexes the bent form has a lower energy and a shorter An

Bz distance, suggesting that (i) the bent structure is favored over
the linear structure for all of the early-actinide complexes, and .

(ii) the An—Bz bonding interactions are stronger in the bent

sandwich structure than in the linear one. Preliminary calculations

of the An—Bz binding energies in the linear and bent forms
provide support for these conclusiofisAn orbital analysis of
the reasons for the preference for benp/Az indicates that the
combined Bz— An 6d and Bz— An 5f donation is greater (and

hence leads to more covalency) in the bent geometry than in the
linear geometry. The decrease in the energy separation of the bent

and linear forms of BAn as one proceeds from the early to the
later actinide elements (Table 1) is primarily due to contraction
of the An 5f orbitals, which leads to lesser differential donation

in the linear and bent geometries. A full analysis of these factors

will be presented in a future publication.
Most efforts to synthesize isolable bis(arene) f-element com-
plexes have employed bulky arenes, such as TBBecause of

the steric demands of these substituted arenes, it is not obviou

that the results obtained for the Bn complexes can be readily
extendable to “bulked-up” sandwich complexes, such as (7BB)

To assess the effects of bulky ligands, we have calculated fully
optimized structures for the linear and bent forms of the sandwich

complexes§%-1,3,5-GH3R3),An (An = Th, U, Pu; R= H, Me,
‘Bu). Table 2 presents the energies and value8 obtained in
these calculations. Surprisingly, bis(mesitylene) complexés (
1,3,5-GHsMes),An are predicted to be bent, nearly as much as
are unsubstituted BAn complexes; apparently, the addition of

three methyl substituents per ring does not provide enough steric
interaction to overcome the electronic preference for a bent struc-

ture. However, whetBu substitutents are used, forming (TB&)

complexes, a linear structure analogous to the experimental

structure of (TBB)Gd is preferred over a bent of&The bending
potential for the (TBB)An complexes is quite stiff because of

Communications to the Editor

Table 2. DFT (PW91) Energies and Centreid\n—Centroid
Angle 6 for (15-1,3,5-GH3Rs3),An (An = Th, U, Pu; R= H, Me,
‘Bu) Complexes

linear bent

ABg-L
compd E(eV) 6(deg) E(eV) 6 (deg) (kcal/molp
(CeHe)2Th —156.8969 180 —157.0940 138.5 —4.6
(CeHsMes),Th —256.4178 180 —256.6473 142.4 —53
(CeH3aBus),Th —553.4077 180 —553.2026 1700 4.7
—552.1159 160/0 29.8
(CsHe)2U —157.5073 180 —157.9475 137.0 —10.2
(CeHsMes),U —257.1507 180 —257.4980 139.8 -8.0
(CeHsBuz)pU —553.8190 180 —553.5337 1700 6.6
—552.1551 160.0 38.4
(CeHe)2Pu —156.3889 180 —156.6706 135.3 —6.5
(CeHsMes),Pu —256.0194 180 —256.2167 137.5 —4.5
(CeH4Buz),Pu —552.6833 180 —552.3058 1700 8.7
—550.6870 160.0 46.0

a8 AEg—L = Epent— Eiinear WhereEpentandEjinear are the total energies
at the optimized geometries in the bent and linear geometries,
respectively? Because the linear structures are the minima for the
(CsH3'Bus)An complexes, the energies for their “bent” structures are
calculated at fixed values ¢f = 160° and§ = 170°.

(a) (b)

Figure 2. Fully optimized PW91 structures for (2)%1,3,5-GHsMes),U
and (b) ¢5-1,3,5-GH3Bus).U. The structures were optimized without

imposing specific symmetry constraints on the final geometfies.

Some recent results in the chemistry of sandwich complexes of
substituted-Cp ligands, such a8-CsRs).Ba (R= Me, CHMg,),>®

S(17~L3-C5Me4R)2Pb (R= H, Me, SiMe&'Bu),?* and ¢;5-CsMeyR),Ti

(R = SiMes, SiMe'Bu),?®> demonstrate analogous dependence of
linear or bent structure on the steric bulk of the ligands.

In summary, our DFT calculations have shown that, unlike
linear BzM complexes of the transition metal sandwich com-
plexes, the BAn actinide sandwich complexes intrinsically prefer
a bent structure. The full geometry optimizations show that when
the GHg ligand is substituted with a very bulky arene such as
TBB, the steric repulsion overcomes the electronic preference for
a bent geometry. Thus, we predict that (TB&) complexes will
exhibit a linear geometry but that this linear geometry is an
exception to the preferred bent geometry ob&z complexes.
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